1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use crate::{polygon, Coord, CoordNum, Line, Polygon};

#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};

/// A bounded 2D area whose three vertices are defined by
/// `Coord`s. The semantics and validity are that of
/// the equivalent [`Polygon`]; in addition, the three
/// vertices must not be collinear and they must be distinct.
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Triangle<T: CoordNum = f64>(pub Coord<T>, pub Coord<T>, pub Coord<T>);

impl<T: CoordNum> Triangle<T> {
    /// Instantiate Self from the raw content value
    pub fn new(v1: Coord<T>, v2: Coord<T>, v3: Coord<T>) -> Self {
        Self(v1, v2, v3)
    }

    pub fn to_array(&self) -> [Coord<T>; 3] {
        [self.0, self.1, self.2]
    }

    pub fn to_lines(&self) -> [Line<T>; 3] {
        [
            Line::new(self.0, self.1),
            Line::new(self.1, self.2),
            Line::new(self.2, self.0),
        ]
    }

    /// Create a `Polygon` from the `Triangle`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use geo_types::{coord, Triangle, polygon};
    ///
    /// let triangle = Triangle::new(
    ///     coord! { x: 0., y: 0. },
    ///     coord! { x: 10., y: 20. },
    ///     coord! { x: 20., y: -10. },
    /// );
    ///
    /// assert_eq!(
    ///     triangle.to_polygon(),
    ///     polygon![
    ///         (x: 0., y: 0.),
    ///         (x: 10., y: 20.),
    ///         (x: 20., y: -10.),
    ///         (x: 0., y: 0.),
    ///     ],
    /// );
    /// ```
    pub fn to_polygon(self) -> Polygon<T> {
        polygon![self.0, self.1, self.2, self.0]
    }
}

impl<IC: Into<Coord<T>> + Copy, T: CoordNum> From<[IC; 3]> for Triangle<T> {
    fn from(array: [IC; 3]) -> Self {
        Self(array[0].into(), array[1].into(), array[2].into())
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for Triangle<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    /// Equality assertion within a relative limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{point, Triangle};
    ///
    /// let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
    /// let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());
    ///
    /// approx::assert_relative_eq!(a, b, max_relative=0.1);
    /// approx::assert_relative_ne!(a, b, max_relative=0.0001);
    /// ```
    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        if !self.0.relative_eq(&other.0, epsilon, max_relative) {
            return false;
        }
        if !self.1.relative_eq(&other.1, epsilon, max_relative) {
            return false;
        }
        if !self.2.relative_eq(&other.2, epsilon, max_relative) {
            return false;
        }

        true
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> AbsDiffEq for Triangle<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum,
    T::Epsilon: Copy,
{
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    /// Equality assertion with an absolute limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{point, Triangle};
    ///
    /// let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
    /// let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());
    ///
    /// approx::abs_diff_eq!(a, b, epsilon=0.1);
    /// approx::abs_diff_ne!(a, b, epsilon=0.001);
    /// ```
    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        if !self.0.abs_diff_eq(&other.0, epsilon) {
            return false;
        }
        if !self.1.abs_diff_eq(&other.1, epsilon) {
            return false;
        }
        if !self.2.abs_diff_eq(&other.2, epsilon) {
            return false;
        }

        true
    }
}