1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
use crate::{CoordNum, Polygon};

use alloc::vec;
use alloc::vec::Vec;
#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};

use core::iter::FromIterator;
#[cfg(feature = "multithreading")]
use rayon::prelude::*;

/// A collection of [`Polygon`s](struct.Polygon.html). Can
/// be created from a `Vec` of `Polygon`s, or from an
/// Iterator which yields `Polygon`s. Iterating over this
/// object yields the component `Polygon`s.
///
/// # Semantics
///
/// The _interior_ and the _boundary_ are the union of the
/// interior and the boundary of the constituent polygons.
///
/// # Validity
///
/// - The interiors of no two constituent polygons may intersect.
///
/// - The boundaries of two (distinct) constituent polygons may only intersect at finitely many points.
///
/// Refer to section 6.1.14 of the OGC-SFA for a formal
/// definition of validity. Note that the validity is not
/// enforced, but expected by the operations and
/// predicates that operate on it.
#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MultiPolygon<T: CoordNum = f64>(pub Vec<Polygon<T>>);

impl<T: CoordNum, IP: Into<Polygon<T>>> From<IP> for MultiPolygon<T> {
    fn from(x: IP) -> Self {
        Self(vec![x.into()])
    }
}

impl<T: CoordNum, IP: Into<Polygon<T>>> From<Vec<IP>> for MultiPolygon<T> {
    fn from(x: Vec<IP>) -> Self {
        Self(x.into_iter().map(|p| p.into()).collect())
    }
}

impl<T: CoordNum, IP: Into<Polygon<T>>> FromIterator<IP> for MultiPolygon<T> {
    fn from_iter<I: IntoIterator<Item = IP>>(iter: I) -> Self {
        Self(iter.into_iter().map(|p| p.into()).collect())
    }
}

impl<T: CoordNum> IntoIterator for MultiPolygon<T> {
    type Item = Polygon<T>;
    type IntoIter = ::alloc::vec::IntoIter<Polygon<T>>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<'a, T: CoordNum> IntoIterator for &'a MultiPolygon<T> {
    type Item = &'a Polygon<T>;
    type IntoIter = ::alloc::slice::Iter<'a, Polygon<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (self.0).iter()
    }
}

impl<'a, T: CoordNum> IntoIterator for &'a mut MultiPolygon<T> {
    type Item = &'a mut Polygon<T>;
    type IntoIter = ::alloc::slice::IterMut<'a, Polygon<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (self.0).iter_mut()
    }
}

#[cfg(feature = "multithreading")]
impl<T: CoordNum + Send> IntoParallelIterator for MultiPolygon<T> {
    type Item = Polygon<T>;
    type Iter = rayon::vec::IntoIter<Polygon<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.into_par_iter()
    }
}

#[cfg(feature = "multithreading")]
impl<'a, T: CoordNum + Sync> IntoParallelIterator for &'a MultiPolygon<T> {
    type Item = &'a Polygon<T>;
    type Iter = rayon::slice::Iter<'a, Polygon<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.par_iter()
    }
}

#[cfg(feature = "multithreading")]
impl<'a, T: CoordNum + Send + Sync> IntoParallelIterator for &'a mut MultiPolygon<T> {
    type Item = &'a mut Polygon<T>;
    type Iter = rayon::slice::IterMut<'a, Polygon<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.par_iter_mut()
    }
}

impl<T: CoordNum> MultiPolygon<T> {
    /// Instantiate Self from the raw content value
    pub fn new(value: Vec<Polygon<T>>) -> Self {
        Self(value)
    }

    pub fn iter(&self) -> impl Iterator<Item = &Polygon<T>> {
        self.0.iter()
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Polygon<T>> {
        self.0.iter_mut()
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for MultiPolygon<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    /// Equality assertion within a relative limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{polygon, Polygon, MultiPolygon};
    ///
    /// let a_el: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
    /// let a = MultiPolygon::new(vec![a_el]);
    /// let b_el: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
    /// let b = MultiPolygon::new(vec![b_el]);
    ///
    /// approx::assert_relative_eq!(a, b, max_relative=0.1);
    /// approx::assert_relative_ne!(a, b, max_relative=0.001);
    /// ```
    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let mut mp_zipper = self.iter().zip(other.iter());
        mp_zipper.all(|(lhs, rhs)| lhs.relative_eq(rhs, epsilon, max_relative))
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> AbsDiffEq for MultiPolygon<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum,
    T::Epsilon: Copy,
{
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    /// Equality assertion with an absolute limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{polygon, Polygon, MultiPolygon};
    ///
    /// let a_el: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7., y: 9.), (x: 0., y: 0.)];
    /// let a = MultiPolygon::new(vec![a_el]);
    /// let b_el: Polygon<f32> = polygon![(x: 0., y: 0.), (x: 5., y: 0.), (x: 7.01, y: 9.), (x: 0., y: 0.)];
    /// let b = MultiPolygon::new(vec![b_el]);
    ///
    /// approx::abs_diff_eq!(a, b, epsilon=0.1);
    /// approx::abs_diff_ne!(a, b, epsilon=0.001);
    /// ```
    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let mut mp_zipper = self.into_iter().zip(other);
        mp_zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(rhs, epsilon))
    }
}

#[cfg(any(
    feature = "rstar_0_8",
    feature = "rstar_0_9",
    feature = "rstar_0_10",
    feature = "rstar_0_11",
    feature = "rstar_0_12"
))]
macro_rules! impl_rstar_multi_polygon {
    ($rstar:ident) => {
        impl<T> $rstar::RTreeObject for MultiPolygon<T>
        where
            T: ::num_traits::Float + ::$rstar::RTreeNum,
        {
            type Envelope = ::$rstar::AABB<$crate::Point<T>>;
            fn envelope(&self) -> Self::Envelope {
                use ::$rstar::Envelope;
                self.iter()
                    .map(|p| p.envelope())
                    .fold(::$rstar::AABB::new_empty(), |a, b| a.merged(&b))
            }
        }
    };
}
#[cfg(feature = "rstar_0_8")]
impl_rstar_multi_polygon!(rstar_0_8);
#[cfg(feature = "rstar_0_9")]
impl_rstar_multi_polygon!(rstar_0_9);
#[cfg(feature = "rstar_0_10")]
impl_rstar_multi_polygon!(rstar_0_10);
#[cfg(feature = "rstar_0_11")]
impl_rstar_multi_polygon!(rstar_0_11);
#[cfg(feature = "rstar_0_12")]
impl_rstar_multi_polygon!(rstar_0_12);

#[cfg(test)]
mod test {
    use super::*;
    use crate::polygon;

    #[test]
    fn test_iter() {
        let multi = MultiPolygon::new(vec![
            polygon![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)],
            polygon![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)],
        ]);

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(
                    p,
                    &polygon![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)]
                );
                first = false;
            } else {
                assert_eq!(
                    p,
                    &polygon![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)]
                );
            }
        }

        // Do it again to prove that `multi` wasn't `moved`.
        first = true;
        for p in &multi {
            if first {
                assert_eq!(
                    p,
                    &polygon![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)]
                );
                first = false;
            } else {
                assert_eq!(
                    p,
                    &polygon![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)]
                );
            }
        }
    }

    #[cfg(feature = "multithreading")]
    #[test]
    fn test_par_iter() {
        let multi = MultiPolygon::new(vec![
            polygon![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)],
            polygon![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)],
        ]);
        let mut multimut = MultiPolygon::new(vec![
            polygon![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)],
            polygon![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)],
        ]);
        multi.par_iter().for_each(|_p| ());
        let _ = &multimut.par_iter_mut().for_each(|_p| ());
        let _ = &multi.into_par_iter().for_each(|_p| ());
        let _ = &mut multimut.par_iter_mut().for_each(|_p| ());
    }
    #[test]
    fn test_iter_mut() {
        let mut multi = MultiPolygon::new(vec![
            polygon![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)],
            polygon![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)],
        ]);

        for poly in &mut multi {
            poly.exterior_mut(|exterior| {
                for coord in exterior {
                    coord.x += 1;
                    coord.y += 1;
                }
            });
        }

        for poly in multi.iter_mut() {
            poly.exterior_mut(|exterior| {
                for coord in exterior {
                    coord.x += 1;
                    coord.y += 1;
                }
            });
        }

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(
                    p,
                    &polygon![(x: 2, y: 2), (x: 4, y: 2), (x: 3, y: 4), (x:2, y:2)]
                );
                first = false;
            } else {
                assert_eq!(
                    p,
                    &polygon![(x: 12, y: 12), (x: 14, y: 12), (x: 13, y: 14), (x:12, y:12)]
                );
            }
        }
    }
}