1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
use crate::{CoordNum, Point};

#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};

use alloc::vec;
use alloc::vec::Vec;
use core::iter::FromIterator;
#[cfg(feature = "multithreading")]
use rayon::prelude::*;

/// A collection of [`Point`s](struct.Point.html). Can
/// be created from a `Vec` of `Point`s, or from an
/// Iterator which yields `Point`s. Iterating over this
/// object yields the component `Point`s.
///
/// # Semantics
///
/// The _interior_ and the _boundary_ are the union of the
/// interior and the boundary of the constituent points. In
/// particular, the boundary of a `MultiPoint` is always
/// empty.
///
/// # Examples
///
/// Iterating over a `MultiPoint` yields the `Point`s inside.
///
/// ```
/// use geo_types::{MultiPoint, Point};
/// let points: MultiPoint<_> = vec![(0., 0.), (1., 2.)].into();
/// for point in points {
///     println!("Point x = {}, y = {}", point.x(), point.y());
/// }
/// ```
#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MultiPoint<T: CoordNum = f64>(pub Vec<Point<T>>);

impl<T: CoordNum, IP: Into<Point<T>>> From<IP> for MultiPoint<T> {
    /// Convert a single `Point` (or something which can be converted to a
    /// `Point`) into a one-member `MultiPoint`
    fn from(x: IP) -> Self {
        Self(vec![x.into()])
    }
}

impl<T: CoordNum, IP: Into<Point<T>>> From<Vec<IP>> for MultiPoint<T> {
    /// Convert a `Vec` of `Points` (or `Vec` of things which can be converted
    /// to a `Point`) into a `MultiPoint`.
    fn from(v: Vec<IP>) -> Self {
        Self(v.into_iter().map(|p| p.into()).collect())
    }
}

impl<T: CoordNum, IP: Into<Point<T>>> FromIterator<IP> for MultiPoint<T> {
    /// Collect the results of a `Point` iterator into a `MultiPoint`
    fn from_iter<I: IntoIterator<Item = IP>>(iter: I) -> Self {
        Self(iter.into_iter().map(|p| p.into()).collect())
    }
}

/// Iterate over the `Point`s in this `MultiPoint`.
impl<T: CoordNum> IntoIterator for MultiPoint<T> {
    type Item = Point<T>;
    type IntoIter = ::alloc::vec::IntoIter<Point<T>>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<'a, T: CoordNum> IntoIterator for &'a MultiPoint<T> {
    type Item = &'a Point<T>;
    type IntoIter = ::alloc::slice::Iter<'a, Point<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (self.0).iter()
    }
}

impl<'a, T: CoordNum> IntoIterator for &'a mut MultiPoint<T> {
    type Item = &'a mut Point<T>;
    type IntoIter = ::alloc::slice::IterMut<'a, Point<T>>;

    fn into_iter(self) -> Self::IntoIter {
        (self.0).iter_mut()
    }
}

#[cfg(feature = "multithreading")]
impl<T: CoordNum + Send> IntoParallelIterator for MultiPoint<T> {
    type Item = Point<T>;
    type Iter = rayon::vec::IntoIter<Point<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.into_par_iter()
    }
}

#[cfg(feature = "multithreading")]
impl<'a, T: CoordNum + Sync> IntoParallelIterator for &'a MultiPoint<T> {
    type Item = &'a Point<T>;
    type Iter = rayon::slice::Iter<'a, Point<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.par_iter()
    }
}

#[cfg(feature = "multithreading")]
impl<'a, T: CoordNum + Send + Sync> IntoParallelIterator for &'a mut MultiPoint<T> {
    type Item = &'a mut Point<T>;
    type Iter = rayon::slice::IterMut<'a, Point<T>>;

    fn into_par_iter(self) -> Self::Iter {
        self.0.par_iter_mut()
    }
}

impl<T: CoordNum> MultiPoint<T> {
    pub fn new(value: Vec<Point<T>>) -> Self {
        Self(value)
    }

    pub fn len(&self) -> usize {
        self.0.len()
    }

    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    pub fn iter(&self) -> impl Iterator<Item = &Point<T>> {
        self.0.iter()
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Point<T>> {
        self.0.iter_mut()
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for MultiPoint<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    /// Equality assertion within a relative limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::MultiPoint;
    /// use geo_types::point;
    ///
    /// let a = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10., y: 10.]]);
    /// let b = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10.001, y: 10.]]);
    ///
    /// approx::assert_relative_eq!(a, b, max_relative=0.1)
    /// ```
    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let mut mp_zipper = self.iter().zip(other.iter());
        mp_zipper.all(|(lhs, rhs)| lhs.relative_eq(rhs, epsilon, max_relative))
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> AbsDiffEq for MultiPoint<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum,
    T::Epsilon: Copy,
{
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    /// Equality assertion with an absolute limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::MultiPoint;
    /// use geo_types::point;
    ///
    /// let a = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10., y: 10.]]);
    /// let b = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10.001, y: 10.]]);
    ///
    /// approx::abs_diff_eq!(a, b, epsilon=0.1);
    /// ```
    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let mut mp_zipper = self.into_iter().zip(other);
        mp_zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(rhs, epsilon))
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{point, wkt};

    #[test]
    fn test_iter() {
        let multi = wkt! { MULTIPOINT(0 0,10 10) };

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(p, &point![x: 0, y: 0]);
                first = false;
            } else {
                assert_eq!(p, &point![x: 10, y: 10]);
            }
        }

        // Do it again to prove that `multi` wasn't `moved`.
        first = true;
        for p in &multi {
            if first {
                assert_eq!(p, &point![x: 0, y: 0]);
                first = false;
            } else {
                assert_eq!(p, &point![x: 10, y: 10]);
            }
        }
    }

    #[test]
    fn test_iter_mut() {
        let mut multi = wkt! { MULTIPOINT(0 0,10 10) };

        for point in &mut multi {
            point.0.x += 1;
            point.0.y += 1;
        }

        for point in multi.iter_mut() {
            point.0.x += 1;
            point.0.y += 1;
        }

        let mut first = true;
        for p in &multi {
            if first {
                assert_eq!(p, &point![x: 2, y: 2]);
                first = false;
            } else {
                assert_eq!(p, &point![x: 12, y: 12]);
            }
        }
    }

    #[test]
    fn test_relative_eq() {
        let delta = 1e-6;

        let multi = wkt! { MULTIPOINT(0. 0.,10. 10.) };

        let mut multi_x = multi.clone();
        *multi_x.0[0].x_mut() += delta;

        assert!(multi.relative_eq(&multi_x, 1e-2, 1e-2));
        assert!(multi.relative_ne(&multi_x, 1e-12, 1e-12));

        let mut multi_y = multi.clone();
        *multi_y.0[0].y_mut() += delta;
        assert!(multi.relative_eq(&multi_y, 1e-2, 1e-2));
        assert!(multi.relative_ne(&multi_y, 1e-12, 1e-12));

        // Under-sized but otherwise equal.
        let multi_undersized = wkt! { MULTIPOINT(0. 0.) };
        assert!(multi.relative_ne(&multi_undersized, 1., 1.));

        // Over-sized but otherwise equal.
        let multi_oversized = wkt! { MULTIPOINT(0. 0.,10. 10.,10. 100.) };
        assert!(multi.relative_ne(&multi_oversized, 1., 1.));
    }

    #[test]
    fn test_abs_diff_eq() {
        let delta = 1e-6;

        let multi = wkt! { MULTIPOINT(0. 0.,10. 10.) };

        let mut multi_x = multi.clone();
        *multi_x.0[0].x_mut() += delta;
        assert!(multi.abs_diff_eq(&multi_x, 1e-2));
        assert!(multi.abs_diff_ne(&multi_x, 1e-12));

        let mut multi_y = multi.clone();
        *multi_y.0[0].y_mut() += delta;
        assert!(multi.abs_diff_eq(&multi_y, 1e-2));
        assert!(multi.abs_diff_ne(&multi_y, 1e-12));

        // Under-sized but otherwise equal.
        let multi_undersized = wkt! { MULTIPOINT(0. 0.) };
        assert!(multi.abs_diff_ne(&multi_undersized, 1.));

        // Over-sized but otherwise equal.
        let multi_oversized = wkt! { MULTIPOINT(0. 0.,10. 10.,10. 100.) };
        assert!(multi.abs_diff_ne(&multi_oversized, 1.));
    }
}