1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
use crate::{CoordNum, LineString};
use alloc::vec;
use alloc::vec::Vec;
#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};
use core::iter::FromIterator;
#[cfg(feature = "multithreading")]
use rayon::prelude::*;
/// A collection of
/// [`LineString`s](line_string/struct.LineString.html). Can
/// be created from a `Vec` of `LineString`s or from an
/// Iterator which yields `LineString`s. Iterating over this
/// object yields the component `LineString`s.
///
/// # Semantics
///
/// The _boundary_ of a `MultiLineString` is obtained by
/// applying the “mod 2” union rule: A `Point` is in the
/// boundary of a `MultiLineString` if it is in the
/// boundaries of an odd number of elements of the
/// `MultiLineString`.
///
/// The _interior_ of a `MultiLineString` is the union of
/// the interior, and boundary of the constituent
/// `LineString`s, _except_ for the boundary as defined
/// above. In other words, it is the set difference of the
/// boundary from the union of the interior and boundary of
/// the constituents.
///
/// A `MultiLineString` is _simple_ if and only if all of
/// its elements are simple and the only intersections
/// between any two elements occur at `Point`s that are on
/// the boundaries of both elements. A `MultiLineString` is
/// _closed_ if all of its elements are closed. The boundary
/// of a closed `MultiLineString` is always empty.
#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MultiLineString<T: CoordNum = f64>(pub Vec<LineString<T>>);
impl<T: CoordNum> MultiLineString<T> {
/// Instantiate Self from the raw content value
pub fn new(value: Vec<LineString<T>>) -> Self {
Self(value)
}
/// True if the MultiLineString is empty or if all of its LineStrings are closed - see
/// [`LineString::is_closed`].
///
/// # Examples
///
/// ```
/// use geo_types::{MultiLineString, LineString, line_string};
///
/// let open_line_string: LineString<f32> = line_string![(x: 0., y: 0.), (x: 5., y: 0.)];
/// assert!(!MultiLineString::new(vec![open_line_string.clone()]).is_closed());
///
/// let closed_line_string: LineString<f32> = line_string![(x: 0., y: 0.), (x: 5., y: 0.), (x: 0., y: 0.)];
/// assert!(MultiLineString::new(vec![closed_line_string.clone()]).is_closed());
///
/// // MultiLineString is not closed if *any* of it's LineStrings are not closed
/// assert!(!MultiLineString::new(vec![open_line_string, closed_line_string]).is_closed());
///
/// // An empty MultiLineString is closed
/// assert!(MultiLineString::<f32>::new(vec![]).is_closed());
/// ```
pub fn is_closed(&self) -> bool {
// Note: Unlike JTS et al, we consider an empty MultiLineString as closed.
self.iter().all(LineString::is_closed)
}
}
impl<T: CoordNum, ILS: Into<LineString<T>>> From<ILS> for MultiLineString<T> {
fn from(ls: ILS) -> Self {
Self(vec![ls.into()])
}
}
impl<T: CoordNum, ILS: Into<LineString<T>>> FromIterator<ILS> for MultiLineString<T> {
fn from_iter<I: IntoIterator<Item = ILS>>(iter: I) -> Self {
Self(iter.into_iter().map(|ls| ls.into()).collect())
}
}
impl<T: CoordNum> IntoIterator for MultiLineString<T> {
type Item = LineString<T>;
type IntoIter = ::alloc::vec::IntoIter<LineString<T>>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'a, T: CoordNum> IntoIterator for &'a MultiLineString<T> {
type Item = &'a LineString<T>;
type IntoIter = ::alloc::slice::Iter<'a, LineString<T>>;
fn into_iter(self) -> Self::IntoIter {
(self.0).iter()
}
}
impl<'a, T: CoordNum> IntoIterator for &'a mut MultiLineString<T> {
type Item = &'a mut LineString<T>;
type IntoIter = ::alloc::slice::IterMut<'a, LineString<T>>;
fn into_iter(self) -> Self::IntoIter {
(self.0).iter_mut()
}
}
impl<T: CoordNum> MultiLineString<T> {
pub fn iter(&self) -> impl Iterator<Item = &LineString<T>> {
self.0.iter()
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut LineString<T>> {
self.0.iter_mut()
}
}
#[cfg(feature = "multithreading")]
impl<T: CoordNum + Send> IntoParallelIterator for MultiLineString<T> {
type Item = LineString<T>;
type Iter = rayon::vec::IntoIter<LineString<T>>;
fn into_par_iter(self) -> Self::Iter {
self.0.into_par_iter()
}
}
#[cfg(feature = "multithreading")]
impl<'a, T: CoordNum + Sync> IntoParallelIterator for &'a MultiLineString<T> {
type Item = &'a LineString<T>;
type Iter = rayon::slice::Iter<'a, LineString<T>>;
fn into_par_iter(self) -> Self::Iter {
self.0.par_iter()
}
}
#[cfg(feature = "multithreading")]
impl<'a, T: CoordNum + Send + Sync> IntoParallelIterator for &'a mut MultiLineString<T> {
type Item = &'a mut LineString<T>;
type Iter = rayon::slice::IterMut<'a, LineString<T>>;
fn into_par_iter(self) -> Self::Iter {
self.0.par_iter_mut()
}
}
#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for MultiLineString<T>
where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
/// Equality assertion within a relative limit.
///
/// # Examples
///
/// ```
/// use geo_types::{MultiLineString, line_string};
///
/// let a = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10., y: 10.)]]);
/// let b = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10.01, y: 10.)]]);
///
/// approx::assert_relative_eq!(a, b, max_relative=0.1);
/// approx::assert_relative_ne!(a, b, max_relative=0.0001);
/// ```
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
if self.0.len() != other.0.len() {
return false;
}
let mut mp_zipper = self.iter().zip(other.iter());
mp_zipper.all(|(lhs, rhs)| lhs.relative_eq(rhs, epsilon, max_relative))
}
}
#[cfg(any(feature = "approx", test))]
impl<T> AbsDiffEq for MultiLineString<T>
where
T: AbsDiffEq<Epsilon = T> + CoordNum,
T::Epsilon: Copy,
{
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
/// Equality assertion with an absolute limit.
///
/// # Examples
///
/// ```
/// use geo_types::{MultiLineString, line_string};
///
/// let a = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10., y: 10.)]]);
/// let b = MultiLineString::new(vec![line_string![(x: 0., y: 0.), (x: 10.01, y: 10.)]]);
///
/// approx::abs_diff_eq!(a, b, epsilon=0.1);
/// approx::abs_diff_ne!(a, b, epsilon=0.001);
/// ```
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
if self.0.len() != other.0.len() {
return false;
}
let mut mp_zipper = self.into_iter().zip(other);
mp_zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(rhs, epsilon))
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::{line_string, wkt};
#[cfg(feature = "multithreading")]
#[test]
fn test_multithreading_linestring() {
let multi: MultiLineString<i32> = wkt! {
MULTILINESTRING((0 0,2 0,1 2,0 0), (10 10,12 10,11 12,10 10))
};
let mut multimut: MultiLineString<i32> = wkt! {
MULTILINESTRING((0 0,2 0,1 2,0 0), (10 10,12 10,11 12,10 10))
};
multi.par_iter().for_each(|_p| ());
multimut.par_iter_mut().for_each(|_p| ());
let _ = &multi.into_par_iter().for_each(|_p| ());
let _ = &mut multimut.par_iter_mut().for_each(|_p| ());
}
#[test]
fn test_iter() {
let multi: MultiLineString<i32> = wkt! {
MULTILINESTRING((0 0,2 0,1 2,0 0), (10 10,12 10,11 12,10 10))
};
let mut first = true;
for p in &multi {
if first {
assert_eq!(p, &wkt! { LINESTRING(0 0,2 0,1 2,0 0) });
first = false;
} else {
assert_eq!(p, &wkt! { LINESTRING(10 10,12 10,11 12,10 10) });
}
}
// Do it again to prove that `multi` wasn't `moved`.
first = true;
for p in &multi {
if first {
assert_eq!(p, &wkt! { LINESTRING(0 0,2 0,1 2,0 0) });
first = false;
} else {
assert_eq!(p, &wkt! { LINESTRING(10 10,12 10,11 12,10 10) });
}
}
}
#[test]
fn test_iter_mut() {
let mut multi = MultiLineString::new(vec![
line_string![(x: 0, y: 0), (x: 2, y: 0), (x: 1, y: 2), (x:0, y:0)],
line_string![(x: 10, y: 10), (x: 12, y: 10), (x: 11, y: 12), (x:10, y:10)],
]);
for line_string in &mut multi {
for coord in line_string {
coord.x += 1;
coord.y += 1;
}
}
for line_string in multi.iter_mut() {
for coord in line_string {
coord.x += 1;
coord.y += 1;
}
}
let mut first = true;
for p in &multi {
if first {
assert_eq!(
p,
&line_string![(x: 2, y: 2), (x: 4, y: 2), (x: 3, y: 4), (x:2, y:2)]
);
first = false;
} else {
assert_eq!(
p,
&line_string![(x: 12, y: 12), (x: 14, y: 12), (x: 13, y: 14), (x:12, y:12)]
);
}
}
}
}